What is addiction?
Scientists are working to learn more about the biology of addiction. They’ve shown that addiction is a long-lasting and complex brain disease, and that current treatments can help people control their addictions. But even for those who’ve successfully quit, there’s always a risk of the addiction returning, which is called relapse.
The biological basis of addiction helps to explain why people need much more than good intentions or willpower to break their addictions.
“A common misperception is that addiction is a choice or moral problem, and all you have to do is stop. But nothing could be further from the truth,” says Dr. George Koob, director of NIH’s National Institute on Alcohol Abuse and Alcoholism. “The brain actually changes with addiction, and it takes a good deal of work to get it back to its normal state. The more drugs or alcohol you’ve taken, the more disruptive it is to the brain.”
Researchers have found that much of addiction’s power lies in its ability to hijack and even destroy key brain regions that are meant to help us survive.
A healthy brain rewards healthy behaviors—like exercising, eating, or bonding with loved ones. It does this by switching on brain circuits that make you feel wonderful, which then motivates you to repeat those behaviors. In contrast, when you’re in danger, a healthy brain pushes your body to react quickly with fear or alarm, so you’ll get out of harm’s way. If you’re tempted by something questionable—like eating ice cream before dinner or buying things you can’t afford—the front regions of your brain can help you decide if the consequences are worth the actions.
But when you’re becoming addicted to a substance, that normal hardwiring of helpful brain processes can begin to work against you. Drugs or alcohol can hijack the pleasure/reward circuits in your brain and hook you into wanting more and more. Addiction can also send your emotional danger-sensing circuits into overdrive, making you feel anxious and stressed when you’re not using the drugs or alcohol. At this stage, people often use drugs or alcohol to keep from feeling bad rather than for their pleasurable effects.
To add to that, repeated use of drugs can damage the essential decision-making center at the front of the brain. This area, known as the prefrontal cortex, is the very region that should help you recognize the harms of using addictive substances.
“Brain imaging studies of people addicted to drugs or alcohol show decreased activity in this frontal cortex,” says Dr. Nora Volkow, director of NIH’s National Institute on Drug Abuse. “When the frontal cortex isn’t working properly, people can’t make the decision to stop taking the drug—even if they realize the price of taking that drug may be extremely high, and they might lose custody of their children or end up in jail. Nonetheless, they take it.”
Scientists don’t yet understand why some people become addicted while others don’t. Addiction tends to run in families, and certain types of genes have been linked to different forms of addiction. But not all members of an affected family are necessarily prone to addiction. “As with heart disease or diabetes, there’s no one gene that makes you vulnerable,” Koob says.
Other factors can also raise your chances of addiction. “Growing up with an alcoholic; being abused as a child; being exposed to extraordinary stress—all of these social factors can contribute to the risk for alcohol addiction or drug abuse,” Koob says. “And with drugs or underage drinking, the earlier you start, the greater the likelihood of having alcohol use disorder or addiction later in life.”
Teens are especially vulnerable to possible addiction because their brains are not yet fully developed—particularly the frontal regions that help with impulse control and assessing risk. Pleasure circuits in adolescent brains also operate in overdrive, making drug and alcohol use even more rewarding and enticing.
Wein, H. (2015, October). Biology of Addiction. NIH News in Health. https://newsinhealth.nih.gov/2015/10/biology-addiction